

# Apoyo a la toma de decisiones con Solver II

Programación lineal básica con Excel Parte II: Planteamiento y formulación de los problemas de PL. Análisis de Sensibilidad o Post-optimalidad

Jose Ignacio González Gómez Departamento de Economía, Contabilidad y Finanzas - Universidad de La Laguna www.jggomez.eu

# INDICE

| 1   | Plar    | ntean  | niento y formulación de los problemas de PL             | 1  |
|-----|---------|--------|---------------------------------------------------------|----|
|     | 1.1     | Con    | sideraciones generales                                  |    |
|     | 1.2     | Ejen   | nplos                                                   |    |
|     | 1.2.1   | 1      | Ejemplo, Problema del transporte                        | 2  |
|     | 1.2.2   | 2      | Ejemplo, Problema de producción                         | 2  |
| 2   | PLB     | y an   | álisis de sensibilidad o de Post-optimalidad            |    |
| 2   | 2.1     | Con    | ceptos básicos                                          |    |
|     | 2.2     | Aná    | lisis de Sensibilidad en Excel. Los informes del Solver | 5  |
|     | 2.2.    | 1      | Características generales                               | 5  |
|     | 2.2.2   | 2      | Informe Responder – Respuesta                           | 6  |
|     | 2.2.    | 3      | Informe Confidencialidad – Sensibilidad                 | 6  |
|     | 2.2.4   | 4      | Informe de Límites                                      | 6  |
|     | 2.2.    | 5      | Casos propuestos                                        | 7  |
| Bił | oliogra | afía   |                                                         | 7  |
| An  | exo: C  | lasos  | modelo para el análisis de sensibilidad                 |    |
| (   | Caso A  | lgro E | Daute SA                                                |    |
|     | 2.2.    | 6      | Enunciado                                               |    |
|     | 2.2.    | 7      | Planteamiento y solución                                |    |
|     | 2.2.8   | 8      | Informe de Confidencialidad o Sensibilidad              |    |
|     | 2.2.    | 9      | Informe de Responder, Respuesta o Dualidad              | 13 |
|     | 2.2.    | 10     | Informe de Límite                                       | 14 |
| (   | Caso G  | Gama   | Marrón SA                                               | 16 |
|     | 2.2.    | 11     | Enunciado                                               | 16 |
|     | 2.2.    | 12     | Planteamiento y solución                                | 16 |
|     | 2.2.    | 13     | Informe de Confidencialidad o Sensibilidad              |    |

| 2.2.14 | Informe de Responder o Respuesta | 19 |
|--------|----------------------------------|----|
| 2.2.15 | Informe de Límite                | 20 |

# 1 Planteamiento y formulación de los problemas de PL

## 1.1 Consideraciones generales

La representación de un problema de la vida real a través de un modelo matemático exige el desarrollo de un trabajo metódico y disciplinado para lo cual es recomendable seguir una serie de pautas o consejos como los que se proponen a continuación<sup>1</sup>.

- **Paso 1** El entendimiento del problema
- **Paso 2** La definición de variables
- **Paso 3** La formulación del modelo
- **Paso 4** La solución del modelo y
- **Paso 5** La comprobación de la solución

Independiente de lo anterior se recomiendan las siguientes prácticas complementarias:

- Describa en palabras el objetivo que se busca al resolver el problema y las restricciones a tener en cuenta.
- Identifique y defina las variables de decisión asociadas al problema. En esta definición deben incluirse las unidades de medida de las variables; por ejemplo: toneladas, metros, unidades, etcétera.
- Identifique los coeficientes de contribución (los **c**j del modelo (1)) asociados a las variables de decisión
- Plantear la función objetivo teniendo presente que haya coherencia entre las unidades de medición.
- Identificar la tasa física de los coeficientes de utilización del recurso (los **a**ij del modelo (1)). Debe tenerse en cuenta las unidades de medición relacionadas con el coeficiente respectivo.
- Identificar los recursos o requerimientos respectivos, es decir los valores de **b**i del modelo (1), incluyendo las unidades de medición asociadas a ellos.
- Plantear las restricciones relacionadas con cada recurso o requerimiento, verificando que haya coherencia entre las unidades de medición.
- Definir las condiciones de no negatividad asociadas a las variables de decisión.

## 1.2 Ejemplos

Como hemos comentado, cuando se quiere analizar un sistema real por medio de la programación lineal el primer paso es construir un modelo matemático que represente el problema. Este primer paso es el más difícil en el análisis y, es importante porque la solución que se obtiene para el sistema depende del modelo planteado. Para construir un modelo no existen reglas, por eso algunos ejemplos prácticos pueden ser de ayuda para desarrollar cierta habilidad tal y como exponemos a continuación<sup>2</sup>.

<sup>&</sup>lt;sup>1</sup> <u>http://metcuantitativos.files.wordpress.com/2008/07/5-mcyal-programacionlineal.pdf</u>

<sup>&</sup>lt;sup>2</sup> Análisis de Sensibilidad con Excel y LINDO (2003): Proyecto e-Math Proyecto E-MATH: "Uso de las TIC en asignaturas cuantitativas aplicadas". Financiado por la Secretaría de Estado de Educación y Universidades (MECD). **Autores:** Ángel A. Juan (ajuanp@uoc.edu), Javier

# 1.2.1 Ejemplo, Problema del transporte

Una empresa produce bicicletas en tres sucursales que tiene en las ciudades  $C_1, C_2$  y C<sub>3</sub>. La capacidad de producción mensual en cada una de las ciudades es 1000, 2100 y 1500, respectivamente.

Tiene cuatro clientes, A, B, C y D, en distintos puntos que demandan mensualmente 800, 1100, 900 y 1300 bicicletas, respectivamente.

En la siguiente tabla se dan los costes unitarios de transporte de las bicicletas que varían en función de la distancia que se recorre desde la ciudad en la que se produce al punto de destino.

|          | Clientes |   |    |    |  |  |
|----------|----------|---|----|----|--|--|
| Ciudades | Α        | В | С  | D  |  |  |
| $C_1$    | 10       | 8 | 10 | 13 |  |  |
| $C_2$    | 19       | 6 | 15 | 16 |  |  |
| $C_3$    | 14       | 8 | 9  | 6  |  |  |

Plantear un modelo que sirva para organizar el transporte a coste mínimo

## Variables de decisión

 $x_{ij}$ : cantidad de bicicletas que se enván mensualmente desde la ciudad C<sub>i</sub>, i = 1, 2, 3 al cliente j, j = A, B, C, D.

Función objetivo: minimizar el coste de transporte

min  $z = 10x_{1A} + 8x_{1B} + 10x_{1C} + 13x_{1D} + 19x_{2A} + 6x_{2B} + 15x_{2C} + 16x_{2D} + 14x_{3A} + 8x_{3B} + 9x_{3C} + 6x_{3D}$ .

Restricciones: las restricciones son la oferta y la demanda

- Oferta de los centros de producción: la capacidad de producción

 $\begin{array}{l} x_{1A} + x_{1B} + x_{1C} + x_{1D} \leq 1000 \\ x_{2A} + x_{2B} + x_{2C} + x_{2D} \leq 2100 \\ x_{3A} + x_{3B} + x_{3C} + x_{3D} \leq 1500 \end{array}$ 

- Es necesario satisfacer la demanda de los clientes

 $\begin{array}{ll} x_{1A} + x_{2A} + x_{3A} \geq 800 \\ x_{1B} + x_{2B} + x_{3B} \geq 1100 \\ x_{1C} + x_{2C} + x_{3C} \geq 900 \\ x_{1D} + x_{2D} + x_{3D} \geq 1300 \\ \hline \\ \text{Las variables deben tomar valores no negativos.} \\ x_{ij} \geq 0, \qquad i = 1, 2, 3, \qquad j = A, B, C, D. \end{array}$ 

## 1.2.2 Ejemplo, Problema de producción

Una empresa de producción fabrica tres tipos de piezas, P1, P2 y P3. En el proceso utiliza tres tipos de máquinas, A, B y C, cuyas horas de trabajo disponibles y el coste de producción se recogen en la siguiente tabla.

Faulín (ffaulin@uoc.edu). http://www.uoc.edu/in3/emath/ Consultado el 28/10/2013 Universidad del País Vasco Creative Commons License. http://ocw2010.ehu.es/course/view.php?id=19

|         |              | Coste de Producción |
|---------|--------------|---------------------|
| Máquina | Horas/semana | euros/hora          |
| А       | 1000         | 6                   |
| В       | 1000         | 4                   |
| С       | 1000         | 5                   |

En la tabla se da el número necesario de horas en cada máquina para la producción de cada pieza.

Para producir las piezas se necesitan dos tipos de materiales, M1 y M2 de los que se tiene 1000 kg y 1200 kg, respectivamente. La cantidad necesaria para cada pieza de cada uno de los materiales se da en la siguiente tabla:

|           | $P_1$ | $P_2$ | $P_3$ |
|-----------|-------|-------|-------|
| Máquina A | 1     | 2     | 3     |
| Máquina B | 2     | 3     | 1     |
| Máquina C | 1     | 1     | 1     |

|       | $M_1$ (kg/pieza) | $M_2$ (kg/pieza) |
|-------|------------------|------------------|
| $P_1$ | 1                | 2                |
| $P_2$ | 1                | 3                |
| $P_3$ | 3                | 1                |

El coste de 1 kg de  $M_1$  es 1.5 euros el de 1 kg de  $M_2$  es 3 euros. Por otra parte, el precio de venta de cada pieza es 50, 56 y 70 euros, respectivamente. El objetivo de la empresa es organizar la producción para obtener el máximo beneficio

#### Variables de decisión

 $x_i$ : número de piezas  $P_i$ , j = 1, 2, 3, que la empresa debe producir semanalmente

Función objetivo: maximizar el beneficio

Beneficio = Precio Venta- Coste materiales - Coste producción.

- Precio de venta =  $50x_1 + 56x_2 + 70x_3$ .
- Coste de los materiales =  $(1 \times 1.5 + 2 \times 3)x_1 + (1 \times 1.5 + 3 \times 3)x_2 + (3 \times 1.5 + 1 \times 3)x_3$ .
- Coste de Producción =  $(1 \times 6 + 2 \times 4 + 1 \times 5)x_1 + (2 \times 6 + 3 \times 4 + 1 \times 5)x_2 + (3 \times 6 + 1 \times 4 + 1 \times 5)x_3$ .

Haciendo los cálculos se tiene la siguiente función objetivo: max  $z = 23.5x_1 + 16.5x_2 + 35.5x_3$ .

*Restricciones:* las restricciones son el tiempo disponible de las máquinas y la cantidad de material.

Restricciones de no negatividad:  $x_1, x_2, x_3 \ge 0$ 

# 2 PLB y análisis de sensibilidad o de Post-optimalidad

## 2.1 Conceptos básicos

En el mundo real, las condiciones de trabajo no suelen permanecer estáticas, sino en continuo estado de cambio, son usuales las variaciones en los precios (en productos materias primas, mano de obra, etc.), y en las cantidades de recursos disponibles. Además, continuamente se producen cambios en los métodos productivos y mejoras tecnológicas que logran aumentar la productividad. El **Análisis de Sensibilidad** se encarga precisamente de estudiar cómo afectaría a la solución óptima obtenida y a la función objetivo el cambio (dentro de un rango predeterminado) de uno de los parámetros, manteniendo fijos los restantes<sup>3</sup>.

Por ejemplo, si nuestros contables estiman revisar los cálculos que los beneficios por cada unidad de producto vendida son de 5,5  $\in$  en vez de la estimación inicial de 5  $\in$ , o si ahora disponemos de recursos adicionales (cómo diez horas más de mano de obra, o de una nueva máquina), el análisis de sensibilidad nos ayudará a conocer cómo afectarán estos cambios a la solución óptima obtenida y a los beneficios totales. Conviene hacer notar que *este tipo de análisis tan sólo tiene sentido para modelos lineales no enteros (no se usa en modelos enteros ni cuadráticos*).

Por tanto, el análisis de sensibilidad se utiliza para examinar los efectos de cambios en tres áreas diferenciadas del problema:

- 1. Los *coeficientes de la función objetivo* (coeficientes objetivo). Los cambios en los coeficientes objetivos NO afectan la forma de la región factible, por lo que no afectarán a la solución óptima (aunque sí al valor de la función objetivo).
- 2. Los *coeficientes tecnológicos* (aquellos coeficientes que afectan a las variables de las restricciones, situados a la izquierda de la desigualdad). Los cambios en estos coeficientes provocarán cambios sustanciales en la forma de la región factible. Gráficamente (en el caso de 2 variables) lo que varía es la pendiente de las rectas que representan las restricciones.
- *3.* Los *recursos disponibles* (los términos independientes de cada restricción, situados a la derecha de la desigualdad). Intuitivamente (para 2 variables), los cambios en el *RHS* suponen desplazamientos paralelos de las rectas asociadas a las restricciones, lo cual hará variar la forma de la región factible y, con ello, a la solución óptima.

¿Qué ocurriría si el beneficio producido por la línea de artículos B aumentase en un 10%?,

¿Qué sucedería si los trabajadores hiciesen una hora extra retribuida un 50% más que una normal?, etc.





<sup>&</sup>lt;sup>3</sup> Análisis de Sensibilidad con Excel y LINDO (2003): Proyecto e-Math Proyecto E-MATH: "Uso de las TIC en asignaturas cuantitativas aplicadas". Financiado por la Secretaría de Estado de Educación y Universidades (MECD). **Autores:** Ángel A. Juan (ajuanp@uoc.edu), Javier Faulín (ffaulin@uoc.edu). http://www.uoc.edu/in3/emath/ Consultado el 28/10/2013. Universidad del País Vasco Creative Commons License. http://ocw2010.ehu.es/course/view.php?id=19

Hay dos maneras de estudiar la "sensibilidad" de una solución respecto a cambios en alguna de las áreas antes mencionadas. La primera de ellas sería volver a resolver todo el problema cada vez que alguno de los datos originales se haya modificado. Obviamente, utilizando este método, podría llevar bastante tiempo determinar todas las variantes cuando nos encontremos ante un conjunto amplio de posibles cambios. La otra forma (Análisis de Sensibilidad) consistiría en, una vez resuelto un problema, analizar cómo afectaría a la solución obtenida y al valor de la función objetivo la variación dentro de un rango "tolerable", de uno de los parámetros, manteniendo fijos los restantes.

Por supuesto, en caso de que queramos estudiar los efectos de la variación de más de un parámetro (o de un parámetro más allá del "rango de tolerancia") deberemos reprogramar el problema.

#### 2.2 Análisis de Sensibilidad en Excel. Los informes del Solver

#### 2.2.1 Características generales

Cuando Solver termina el proceso de resolución, muestra un mensaje de conclusión en la parte superior del cuadro de diálogo Resultados de Solver , que puede ser:

- 1. "Solver encontró una solución. Se cumplen todas las restricciones y condiciones óptimas".
- 2. "Solver no ha encontrado una solución válida"

| Resultados de Solver                                                                                                                                           | ×                                                                  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|--|--|--|--|
| Solver encontró una solución. Se cumplen todas las<br>restricciones y condiciones óptimas.<br>© Conservar solución de Solver<br>© Restaurar valores originales | Informes<br>Responde <sup>ros</sup><br>Confidencialidad<br>Límites |  |  |  |  |  |  |  |
| □ Volv <u>e</u> r al cuadro de diálogo de parámetros de<br>Solver                                                                                              | ☐ Informes de esq <u>u</u> ema                                     |  |  |  |  |  |  |  |
| Aceptar <u>C</u> ancelar                                                                                                                                       | Gua <u>r</u> dar escenario                                         |  |  |  |  |  |  |  |
| Solver encontró una solución. Se cumplen todas las restricciones y condiciones<br>óptimas.                                                                     |                                                                    |  |  |  |  |  |  |  |
| Al usar el motor GRG, Solver ha encontrado al menos<br>usar Simplex LP, significa que Solver ha encontrado u                                                   | una solución óptima local. Al<br>na solución óptima global.        |  |  |  |  |  |  |  |

#### Ilustración 2

Si se cumple la primera condición y pulsamos el botón de aceptar, Solver coloca los valores encontrados en las celdas cambiantes y determina la función objetivo.

Pero Solver no solo permite dar solución, si la tiene al problema planteado, además nos da la posibilidad de contar con conjunto de informes que están vinculados o condicionados al algoritmo empleado siempre y cuando estemos con un problema de PL continuas o clásicas.

Solver nos ofrece tres tipos de informes relacionados con la resolución obtenida al problema aplicando:

- Informe de Responder o Respuesta
- Informe de Confidencialidad o Sensibilidad

#### • Informe de Límite

Cada informe se inserta en una hoja distinta del libro de trabajo.

A continuación nos centramos en las características principales de cada tipo de informe.

#### 2.2.2 Informe Responder – Respuesta

Los especialistas suelen dar muchísima importancia a los informes de Respuesta y Sensibilidad, por cuanto ellos le permiten simular que pasaría si se cambian determinados parámetros.

Tal y como se muestra en la **¡Error! No se encuentra el origen de la referencia.** y **¡Error! No se encuentra el origen de la referencia.** este tipo de informe nos ofrece determinados aspectos técnicos como método empleado, interaciones, tiempo tardado en la solución, etc.

Nos da además el valor máximo de la celda objetivo, así como de las celdas variables o cambiantes con sus valores originales y sus valores finales. También, muestra las restricciones e información sobre las mismas.

Es decir, muestra una lista con la celda objetivo y las celdas ajustables con sus valores originales y sus valores finales, las restricciones y la información acerca de éstas.

El informe de Respuestas presenta un resumen de los resultados de la optimización: Valor de la función objetivo: Situación de cada restricción, en particular si la restricción es limitante (obligatorio) o no limitante (opcional) y finalmente el valor de la divergencia (Slack)

#### 2.2.3 Informe Confidencialidad – Sensibilidad

Este informe difiere sensiblemente si aplicamos el algoritmo de programación lineal Simplex PL o seleccionamos otro modelo o algoritmo no lineal como el GRG Nolinear. En el caso de seleccionar Simplex PL el modelo de informe de sensibilidad o confidencialidad que obtendríamos es el mostrado en la **¡Error! No se encuentra el origen de la referencia.** y en **¡Error! No se encuentra el origen de la referencia**.. En cualquier caso este tipo de informe proporciona información sobre la sensibilidad de una solución a pequeños cambios en la fórmula de la Celda objetivo y en las restricciones.

Este tipo de informe para los modelos lineales incluye costos reducidos, precios sombra, coeficiente objetivo (con aumento o disminución permisible) y restricción lado derecho.

#### 2.2.4 Informe de Límites

El informe de Límites fue diseñado por Microsoft con el fin de suministrar un análisis diferente de sensibilidad.

El informe de límites muestra el rango de los valores que pueden asumir las celdas cambiantes (variables de decisión), basados en los restricciones que se hayan definido.

En este informe se indica la celda nombrada en el cuadro Celda objetivo y las celdas cambiantes con sus respectivos valores, límites máximos y mínimos y los valores objetivos. El límite mínimo es el valor mínimo que puede tolerar una celda cambiante manteniendo fijas todas las otras celdas cambiantes y sin dejar de satisfacer las restricciones. El límite máximo es el valor máximo. El resultado objetivo es el valor de la celda en el cuadro Celda objetivo cuando la celda cambiante alcanza su límite mínimo o máximo (ver **¡Error! No se encuentra el origen de la referencia.** e **¡Error! No se encuentra el origen de la** 

#### 2.2.5 *Casos propuestos*

Para apoyar este análisis de sensibilidad y los informes del Solver exponemos una serie de casos en el apartado Anexo: Casos modelo, en concreto el caso "AgroDaute SA y Gama Marrón SA, en los cuales se pretende maximizar el beneficio condicionado a la limitación de recursos y evaluar las tres cuestiones determinantes del análisis de sensibilidad:

- 1. Los coeficientes de la función objetivo (coeficientes objetivo).
- 2. Los <u>coeficientes tecnológicos</u> (aquellos coeficientes que afectan a las variables de las restricciones, situados a la izquierda de la desigualdad).
- 3. Los recursos disponibles

# Bibliografía

http://metcuantitativos.wordpress.com/programacion-lineal/ http://metcuantitativos.files.wordpress.com/2008/07/5-mcyal-programacionlineal.pdf http://uplamcdn.files.wordpress.com/2009/04/libro-cap-03.pdf http://www.uv.es/asepuma/VI/31.PDF http://www.hiru.com/matematicas/programacion-lineal https://sites.google.com/site/optimizacionlineal2404/clasificacion-de-planteamientos http://www.uoc.edu/in3/emath/ Investigación operativa. Programación lineal, [2011/06] [cas]: UPV/EHU. Autores: Fernández

Investigación operativa. Programación lineal, [2011/06] [cas]: UPV/EHO. Autores: Fernandez González, Victoria y Zelaia Jauregi, Ana. Creative Commons License. Consultado 30-10-2013 <u>http://ocw2010.ehu.es/course/view.php?id=19</u>

Apuntes de la asignatura Modelos de Optimización I, profesor responsable Silvia Ramos, Facultad de Ingeniería Universidad de Buenos Aires. Consultada realizada el 31/10/2013 http://materias.fi.uba.ar/7114/infogral.php

http://metcuantitativos.files.wordpress.com/2008/07/5-mcyal-programacionlineal.pdf y personal

https://sites.google.com/site/optimizacionlineal2404/clasificacion-de-planteamientos www.uoc.edu/in3/emath/docs/Analisis Sensibilidad.pdf - http://www.uoc.edu/in3/emath/

# Anexo: Casos modelo para el análisis de sensibilidad

#### Caso AgroDaute SA

Extraído y adaptado de Raymond Beneke y Ronald Winterboer Benecke, "Linear Programming Applications to Farm Planning". Publicado en Ames, Iowa State University Press 1973

#### 2.2.6 Enunciado

Un productor agrícola dispone de los siguientes recursos destinados a la producción de Maíz, Soja y Avena:

- 12 acres de tierra (medida de superficie americana equivalente a 0,4047 hectáreas. Una hectárea igual a 2,471 acres)
- 48 horas de trabajo familiar
- 360 \$ de capital

Los condicionantes del mercado aconsejan producir tres productos, Maíz, Soya y Avena, con los siguientes coeficientes técnicos de cultivo y márgenes.

| margenes        |          |          |          |  |  |  |  |
|-----------------|----------|----------|----------|--|--|--|--|
| Maíz Soya Avena |          |          |          |  |  |  |  |
| Extensión       | 1,0 acre | 1,0 acre | 1,0 acre |  |  |  |  |
| Mano de         |          |          |          |  |  |  |  |
| Obra            | 6,0 hr   | 6,0 hr   | 2,0 hr   |  |  |  |  |
| Capital         | 36,0 \$  | 24,0 \$  | 18,0 \$  |  |  |  |  |
| Margen          | 40,0     | 30,0     | 20,0     |  |  |  |  |
| Bruto           | \$/acre  | \$/acre  | \$/acre  |  |  |  |  |

# Coeficientes técnicos de producción y

Margen Bruto (Ingresos – Costes Variables de Producción)

#### Se pide:

Él productor está interesado en saber que cantidad de acres debe sembrar de cada producto, a fin de obtener el máximo ingreso posible por el uso de sus recursos.

#### Formulación algebraica del problema

| Maxim  | izar la función de Beneficio:                                                                       | $Z = 40X_M + 30X_S + 20X_A$     |
|--------|-----------------------------------------------------------------------------------------------------|---------------------------------|
| Sujeta | a las siguientes restricciones:                                                                     |                                 |
| [1]    | $1X_{M} + 1X_{S} + 1X_{A} \le 12$                                                                   | Restricción del recurso Tierra  |
| [2]    | $6X_M + 6X_s + 2X_A \le 48$                                                                         | Restricción del recurso Trabajo |
| [3]    | $36X_{\scriptscriptstyle M}+24X_{\scriptscriptstyle S}+18X_{\scriptscriptstyle A}\leq 360$          | Restricción del recurso Capital |
|        | $X_{\scriptscriptstyle M} \geq 0  X_{\scriptscriptstyle S} \geq 0  X_{\scriptscriptstyle A} \geq 0$ | Restricción de no negatividad   |

#### 2.2.7 Planteamiento y solución

Identificación de las Variables de Decisión o Celdas Cambiantes (Changing Cells).

En nuestro caso (ver Ilustración 3) será el rango B16:D16, es decir la cantidad de extensiones dedicadas a cada cultivo.

Se pueden especificar hasta 200 variables de decisión; no obstante para efectos de este problema solo se necesitan tres variables: Maíz, Soya y Avena.

Definición y programación de las restricciones, RHS (Right Hand Side)

Especificar las *Restricciones (Constraints Cells).* Las restricciones deben caer dentro de ciertos límites o satisfacer los valores objetivos. Se pueden especificar hasta 500 restricciones –dos par cada una de las variables de decisión – mas 100 restricciones adicionales, representando un total de no mas de 1000 celdas en un problema.

En nuestro caso contamos solamente con tres restricciones, a saber:

- <u>Restricción del Recurso Tierra</u>, cuyo consumo (celda E17) no debe superar la disponibilidad o tamaño del terreno 12 acres.
- <u>*Restricción del Recurso Trabajo*</u>, cuyo consumo (celda E18) no debe superar la disponibilidad total es de decir 48 horas de mano de obra familiar.
- <u>*Restricción del Recurso Capital*</u> cuyo consumo (celda E19) no debe superar la disponibilidad total es de decir 360 \$ de capital.

En el lenguaje de la Programación Lineal a esta disponibilidad se le denomina con las letras **RHS** (iniciales de Right Hand Side), lado derecho de la desigualdad, es decir D26, D27 y D28 respectivamente para cada uno de los recursos, celdas con fondo rojo.

|    | А                          | В             | С            | D               | E            | F       |  |  |  |
|----|----------------------------|---------------|--------------|-----------------|--------------|---------|--|--|--|
| 13 | Variables de [             | Decisión      | Función (    | Objetivo        |              |         |  |  |  |
| 14 | Platteamiento del Problema |               |              |                 |              |         |  |  |  |
| 15 |                            | Maíz          | Soya         | Avena           | Total        |         |  |  |  |
| 16 | Producción                 | 6,0 acre      | 0,0 acre     | 6,0 acre        | 12,0 acre    |         |  |  |  |
| 17 | Extensión                  | 6,0 acre      | 0,0 acre     | 6,0 acre        | 12,0 acre    |         |  |  |  |
| 18 | Mano de Obra               | 36,0 hr       | 0,0 hr       | 12,0 hr         | 48,0 hr      |         |  |  |  |
| 19 | Capital                    | 216,0 \$      | 0,0 \$       | 108,0 \$        | 324,0 \$     |         |  |  |  |
| 20 | Marg. Unitario             | 40,0 \$/acre  | 30,0 \$/acre | 20,0 \$/acre    |              |         |  |  |  |
| 21 | Margen Bruto               | 240€          | 0€           | 120€            | 360€         |         |  |  |  |
| 22 |                            |               |              |                 |              |         |  |  |  |
| 23 | Restricciones              |               |              |                 |              |         |  |  |  |
| 24 | Todas las varial           | bles deber se | er no negati | vas             |              |         |  |  |  |
| 25 | Limitación de d            | isponibilida  | d de Recur   | sos - RESTRI    | ICCIONES     | Holgura |  |  |  |
| 26 | Postrissiones              | lleo          | Nivel        | es de restricci | ones -       | (Slack) |  |  |  |
| 27 | Restrictiones              | 050           | Disponibilid | ad RHS (Right   | t Hand Side) |         |  |  |  |
| 28 | Extensión                  | 12 ud         | <=           | 12,0 acre       | E17          | 0 ud    |  |  |  |
| 29 | Mano de Obra               | 48,0 hr       | <=           | 48,0 hr         | E18          | 0,0 hr  |  |  |  |
| 30 | Capital                    | 324,0 \$      | <=           | 360,0 \$        | E19          | 36,0 \$ |  |  |  |
|    | Ilustración 3              |               |              |                 |              |         |  |  |  |

El comentario que resulta de la solución propuesta por el Solver (Ilustración 8) seria:

El máximo ingreso que se puede obtener por el hecho de asignar los recursos a la siembra de 6 acres de Maíz y 6 acres de Avena es de 360 US \$. No es posible organizar los recursos de otro manera, distinta a la indicada por el Solver, de tal forma que se pueda generar un ingreso superior a 360 US \$.

A fin de calcular el ingreso neto de la explotación el productor agrícola debe deducir los costos fijos del valor final, por la sencilla razón de que los costos variables ya fueron imputados en la estimación de los coeficientes objetivos de cada actividad. Para ser mas preciso, si los costos fijos fueran del orden de 100 US \$, entonces los ingresos netos de la explotación ascenderían a 260 US \$

#### <u>Definición y programación de la celda objetivo</u>

Finalmente debemos identificar la celda objetivo, en nuestro caso será E20, es decir la que nos genera mayor margen de beneficio bruto y por tanto pretendemos maximizar.

Tomando en consideración la formulación algebraica del problema así como el diseño de la hoja de cálculo y programación de las celdas, pasamos a continuación a programar los parámetros del Solver y que nos permitirá alcanzar nuestro objetivo.

| Parámetros de Solver                   |                          |                   |
|----------------------------------------|--------------------------|-------------------|
|                                        |                          |                   |
| Establecer objetivo:                   | \$E\$20                  |                   |
| Para: 💿 Máx. 💿                         | Mín © <u>V</u> alor de:  | 0                 |
| Cambiando <u>l</u> as celdas de variab | les:                     |                   |
| \$B\$16:\$D\$16                        |                          | <b>E</b>          |
| Sujeto a las restricciones:            |                          |                   |
| \$B\$25:\$B\$27 <= \$D\$25:\$D\$2      | ×                        | ^ <u>A</u> gregar |
|                                        |                          | Cambiar           |
|                                        |                          | Eliminar          |
|                                        |                          | Restablecer todo  |
|                                        |                          |                   |
| Convertir variables sin rest           | icciones en no negativas |                   |
| Método d <u>e</u> resolución:          | Simplex LP               | ▼ Opciones        |
|                                        |                          |                   |

**Ilustración 4** 

Es decir, en concreto debemos considerar

- 1) <u>Celda objetivo</u> La celda que contiene la función objetiva cuyo valor se desea optimizar (maximizar/minimizar), en nuestro caso la celda E20.
- *2)* **Función objetivo Z:** Función matemática almacenada en la celda objetivo cuya fórmula es: *M S A Z* = 40*X* + 30*Y* + 20*Z*
- 3) <u>Coeficiente objetivo</u> Es el valor de la actividad o los precios netos de las actividades: Maíz, 40; Soya, 30; y Avena, 20

En este apartado debemos tomar en consideración el especificar las Restricciones de No negatividad para asegurarse que las celdas cambiantes adopten solo valores no negativos, es decir  $\ge 0$ . Esta condición tiene su razón de ser pues no se concibe la producción de cantidades negativas de producto.

#### 2.2.8 Informe de Confidencialidad o Sensibilidad

Como hemos comentado, los especialistas suelen dar muchísima importancia a los informes de Reporte y Sensibilidad, por cuanto ellos le permiten simular que pasaría si se cambian determinados parámetros.

Es decir proporciona información acerca de la sensibilidad de la solución a que se realicen pequeños cambios en la fórmula definida en el cuadro Definir celda objetivo del cuadro de diálogo Parámetros de Solver o de las restricciones. <u>No se genera este informe para los modelos que tengan restricciones enteras</u>. <u>En modelos no lineales, el informe facilita los valores para las gradientes y los multiplicadores de Lagrange. En los modelos lineales, el informe incluye costos reducidos, otros precios, coeficiente de objetivos (con aumentos y disminuciones permitidos) y rangos de restricciones hacia la derecha</u>.

De otra forma, el informe de Sensibilidad proporciona información sobre cuán sensible es la celda objetivo a los cambios en sus restricciones. En caso de seleccionar Modelo No Lineal en las Opciones, el informe de Sensibilidad no incluye varias columnas de información.

El informe de sensibilidad suministra detalles adicionales de la optimización. Solver genera dos tablas en este informe (ver Ilustración 5): una para las variables y la otra para las restricciones. El análisis de sensibilidad es el estudio de cómo los cambios en uno de los parámetros del problema afectan a la solución óptima.

Una *nota técnica a considerar* es que los informes de sensibilidad no pueden trabajar con celdas combinadas en la hoja de cálculo que esta optimizando. Si ejecuta un informe de sensibilidad y aparece con los precios sombra en blanco puede deberse a las celdas combinadas en la hoja de cálculo. Las celdas combinadas afectan a la capacidad de Solver de asignar etiquetas a los informes. Para eliminar estas celdas de los informes, siga los pasos siguientes: seleccione todas las celdas de la hoja de cálculo, vaya al menú Formato y seleccione Celdas, haga clic en la pestaña Alineación y verifique que no está seleccionada la casilla Combinar celdas.

|    | Α                     | В       | С                      | D     | E           | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | G              | Н                |      |
|----|-----------------------|---------|------------------------|-------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|------|
| 6  | 6 Celdas de variables |         |                        |       | oste Reduc  | ido Ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ngo de los coe | eficientes objet | ivos |
| 7  |                       | Paráme  | tros o Coeficiantes    | Final | Reducido    | Objetivo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Permisible     | Permisible       |      |
| 8  | L .                   | Celda   | Nombre                 | Valor | Coste       | Coeficiente                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Aumentar       | Reducir          |      |
| 9  |                       | \$B\$16 | Producción Maíz        | 6     | 0           | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20             | 10               |      |
| 10 |                       | \$C\$16 | Producción Soya        | 0     | -10         | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10             | 1E+30            |      |
| 11 |                       | \$D\$16 | Producción Avena       | 6     | 0           | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20             | 6,666666667      |      |
| 12 | 12                    |         |                        |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                  |      |
| 13 | Restricciones P       |         |                        |       | ecios Duale | es a la companya de la compan | Rangos Righ    | nt – Hand - Side | -    |
| 14 |                       |         |                        | Final | Sombra      | Restricción                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Permisible     | Permisible       |      |
| 15 |                       | Celda   | Nombre                 | Valor | Precio      | Lado derecho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Aumentar       | Reducir          |      |
| 16 |                       | \$B\$26 | Extensión Uso          | 12    | 10          | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4              | 4                |      |
| 17 |                       | \$B\$27 | Mano de Obra Uso       | 48    | 5           | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8              | 24               |      |
| 18 |                       | \$B\$28 | Capital Uso            | 324   | 0           | 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1E+30          | 36               |      |
| 19 |                       | F       | Recursos Disponibles o |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                  |      |
| 20 |                       |         | Restricciones          |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                  |      |

#### Ilustración 5

- 1) *Celdas Variables-Celdas Cambiantes (Variables de Decisión)*. Esta sección del informe indica que actividades entraron en el plan final (solución óptima).
  - Parámetros o Coeficientes. Los parámetros son constantes usadas en el problema para determinar la función objetiva y los recursos disponibles (restricciones o RHS).
  - Valor Final o Final Valor (solución óptima). Indica la solución óptima obtenida, en nuestro ejemplo 6 acres de Maíz y 6 de Avena, respectivamente. Como comentamos anteriormente Es el mejor valor de las celdas cambiantes, es decir cuantas unidades se deben producir de cada actividad. El Solver indica con un cero las actividades que no entran en la solución óptima, tal es el caso de la actividad Soya
  - Coste Reducido, Gradiente Reducido o Costo de Oportunidad. Las actividades que entran en el plan óptimo tienen un costo reducido igual a cero, mientras que las que no entran tienen un costo reducido negativo. Así por ejemplo, la Soya no entró en el plan óptimo. Si el productor agrícola decidiera sembrar un solo acre de Soya su ingreso neto disminuiría de 360 a 250 US\$.

Una manera de interpretar un Costo Reducido no nulo (zj-cj >0) es la siguiente : el Costo Reducido asociado a una variable (xj) de decisión indica en cuanto debe incrementarse el coeficiente correspondiente en la función objetivo (cj) para que el empleo de dicha variable en la solución óptima resulte rentable.

- Coeficiente Objetivo u Objetivo Coeficiente. Son los precios netos de cada actividad.
- Rangos o RHS . Son los rangos en que se pueden mover las restricciones es decir la disponibilidad de recursos. En este sentido tenemos:
  - Aumento Permisible Indica en cuanto se puede aumentar un coeficiente objetivo (precio neto) sin que cambie la solución óptima.
  - **Disminución Permisible** Indica en cuanto puede disminuir un coeficiente objetivo (precio neto) sin que cambie la solución óptima.
- Rango de Optimalidad Se forma a partir de los coeficientes objetivos y de los aumentos y disminuciones permisibles. La solución óptima de un modelo de Programación Lineal no cambia si un coeficiente objetivo de alguna variable en la función objetiva cambia dentro de cierto rango. Solo se permite el cambio de un coeficiente.

Por ejemplo, que pasa con la solución óptima si el coeficiente objetivo de la actividad Avena se incrementa de 20 a 30 \$? Para responder esta pregunta se deben calcular previamente el rango de optimalidad, es decir:

Límite superior: 20 + 20 = 40 Límite inferior 20 - 6,667 = 13,337

Dado que el coeficiente objetivo modificado [30] cae en el intervalo [40 ;13,337] se puede asegurar que no habrá cambio en la solución óptima.

- 2) Restricciones.
  - Valor Final Indica la cantidad de los recursos disponibles utilizados en el proceso productivo.
  - Precio Sombra (o Precios Duales). Es el cambio marginal en el valor de la función objetiva óptima que se produce si se modifica una restricción (es decir si se incremente en una unidad).

El Precio Sombra para cada una de las restricciones representa el cambio a nivel de la Función Objetivo como consecuencia de una modificación marginal (de una unidad) del Lado Derecho de las restricciones (el límite de disponibilidad del recurso). Se asume que la solución es óptima y que todos los otros parámetros del problema se mantienen constantes.

Los Precios Sombra pueden ser calculados modificando el Lado Derecho de la restricción de una unidad, resolviendo el sistema y luego comparando la diferencia a nivel de la Función Objetivo.

Estos Precios Sombra permanecen constantes solamente al interior de un rango de valores, dentro del cual la restricción continúa estando activa ("binding"), al que se denomina Intervalo Permitido de Factibilidad. El Intervalo Permitido para permanecer Factible es el intervalo de valores del coeficiente bi (correspondiente a la restricción i) en el que la solución óptima permanece factible.

Estos Intervalos o Rangos pueden ser calculados a partir de la información disponible a nivel del Informe de Sensibilidad: Incremento permitido ("Allowable Increase") y Decremento permitido ("Allowable Decrease").

- Restricción Lado Derecho (Constraints). Son límites físicos, económicos, tecnológicas, o de cualquier otra índole, que se imponen a las variables de decisión: 12 acres de tierra, 48 horas de trabajo y 360 dólares de capital.
- Aumento y Disminución Permisible Indica en cuanto se puede aumentar/disminuir el recurso disponible sin que se modifique la solución óptima
- Rango de Factibilidad Indica que el valor del precio de sombra permanecerá sin modificación alguna, siempre y cuando la restricción en cuestión permanezca dentro del llamado rango de factibilidad

#### 2.2.9 Informe de Responder, Respuesta o Dualidad

El informe de Respuestas presenta un resumen de los resultados de la optimización organizado en tres apartados tal y como podemos ver en la Ilustración 6

- 1) <u>Celda objetivo (Máx.)</u>
  - Valor Final. Valor óptimo de la función objetivo alcanzado
- 2) *Celdas Variables-Celdas Cambiantes (Variables de Decisión)*. Esta sección del informe indica que actividades entraron en el plan final (solución óptima).
  - Valor Final (solución óptima). Es el mejor valor de las celdas cambiantes, es decir cuantas unidades se deben producir de cada actividad. El Solver indica con un cero las actividades que no entran en la solución óptima, tal es el caso de la actividad Soya

El plan final manda a cultivar 6 acres de Maíz y 6 acres de Avena, a fin de obtener el máximo ingreso. Para verificarlo realizamos el siguiente cálculo:

|    | A B       | C                  | D                 | E                | F             | G             |
|----|-----------|--------------------|-------------------|------------------|---------------|---------------|
| 14 | Celda ob  | jetivo (Máx.)      |                   |                  |               |               |
| 15 | Celda     | Nombre             | Valor original    | Valor final      | Valor         | Óptimo de     |
| 16 | \$E\$20   | Margen Bruto Total | 0€                | 360€             | Fund          | ción Objetivo |
| 17 |           |                    |                   |                  |               |               |
| 18 |           |                    |                   | Solución Óptir   | na            |               |
| 19 | Celdas d  | e variables        |                   | 1                |               |               |
| 20 | Celda     | Nombre             | Valor original    | Valor final      | Entero        |               |
| 21 | \$B\$16   | Producción Maíz    | 0,0 acre          | 6,0 acre         | Continuar     | _             |
| 22 | \$C\$16   | Producción Soya    | 0,0 acre          | 0,0 acre         | Continuar     | _             |
| 23 | \$D\$16   | Producción Avena   | 0,0 acre          | 6,0 acre         | Continuar     |               |
| 24 |           |                    | l                 |                  |               |               |
| 25 |           |                    |                   |                  | Carenci       | a o Exceden   |
| 26 | Restricci | ones               |                   |                  |               |               |
| 27 | Celda     | Nombre             | Valor de la celda | Fórmula          | Estado        | Demora        |
| 28 | \$B\$26   | Extensión Uso      | 12 ud             | \$B\$26<=\$D\$26 | Vinculante    | 0             |
| 29 | \$B\$27   | Mano de Obra Uso   | 48,0 hr           | \$B\$27<=\$D\$27 | Vinculante    | 0             |
| 30 | \$B\$28   | Capital Uso        | 324,0€            | \$B\$28<=\$D\$28 | No vinculante | 36            |
| 31 |           |                    |                   |                  |               |               |

Ingreso máximo = 40\*6+20\*6 = 360 US \$

#### **Ilustración 6**

- 3) <u>*Restricciones,*</u> Informa de la <u>s</u>ituación de cada restricción planteada
  - Valor de la celda, muestra el valor de consumo o uso del recurso para alcanzar el óptimo planteado o alcanzado en la celda objetivo
  - Estado. Indica si un recurso se ha usado completamente (Vinculante, Obligatorio, o Limitante) o parcialmente (No Vinculante, Opcional o No limitante)

- Vinculante, Binding, Limitante u Obligatorio. Se dice que un recurso es obligatorio (o limitante) cuando el recurso utilizado es igual al Recurso disponible.
- No Vinculante, Not Binding No Limitante u Opcional. Cuando el recurso utilizado es menor que el recurso disponible. En este caso resulta una Divergencia o Demora (Slack)
- Demora, Divergencia, Slack o Variables de Holgura. Cantidad de recurso que no ha sido usado o asignado en el proceso productivo, como hemos comentado en este caso resulta una *Divergencia o Demora (Slack)*

El valor de holgura es la diferencia entre el valor de la solución de las celdas de restricción y el número que aparece en el lado derecho de la fórmula de restricción. Una restricción Obligatoria es una para el que el valor de holgura es 0.

En el lenguaje del Solver se dice que un recurso es limitante (**Binding**) cuando los Recursos Utilizados son iguales a los Recursos Disponibles; de lo contrario se le denomina Recurso No Limitantes (**Not binding**) (Los recursos utilizados son menores que los recursos disponibles).

Debido a problemas de traducción Uds. leerán en la columna **Estado** la palabra **Obligatorio**, en lugar de **Limitante**. La palabra Obligatorio en las Restricciones Tierra y Capital indican que esos recursos se usaron completamente en el proceso productivo.

Adicionalmente en la columna Estado aparece la palabra **Opcional** para indicar que no se uso todo el Capital. Si no se utilizó todo el capital, entonces hay un excedente de dicho recurso (36 US \$), por lo cual hay que concluir que dicho recurso es **No Limitante**.

#### 2.2.10 Informe de Límite

El informe de Límites fue diseñado por Microsoft con el fin de suministrar un análisis diferente de sensibilidad. El informe de límites muestra el rango de los valores que pueden asumir las celdas cambiantes (variables de decisión), basados en los restricciones que se hayan definido.

Como podemos observar en la Ilustración 7 disponemos de una lista con la celda objetivo y las celdas ajustables con sus valores correspondientes, los límites inferior y superior, así como los valores del objetivo. No se genera este informe para los modelos que tengan restricciones enteras. El límite inferior es el valor mínimo que puede tomar la celda ajustable mientras se mantienen todas las demás celdas ajustables fijas y se continúa satisfaciendo las restricciones. El límite superior es el valor máximo

|    | Δ        | R     | C                  | D        | F | E        | G          | н |          |            |   |
|----|----------|-------|--------------------|----------|---|----------|------------|---|----------|------------|---|
|    | A        | D     | C                  | U        |   | ſ        | 0          | n |          | J          |   |
| 6  |          |       | Objetivo           |          |   |          |            |   |          |            |   |
| 7  | <u> </u> | Celda | Nombre             | Valor    | _ |          |            |   |          |            |   |
| 8  | \$       | E\$20 | Margen Bruto Total | 360€     |   |          |            |   |          |            |   |
| 9  |          |       |                    |          |   |          |            |   |          |            |   |
| 10 |          |       |                    |          | _ |          |            | _ |          |            |   |
| 11 |          |       | Variable           |          |   | Inferior | Objetivo   |   | Superior | Objetivo   |   |
| 12 | 0        | Celda | Nombre             | Valor    | _ | Límite   | Resultado  | _ | Límite   | Resultado  |   |
| 13 | \$       | B\$16 | Producción Maíz    | 6,0 acre | _ | 0,0 acre | 120,0 acre |   | 6,0 acre | 360,0 acre |   |
| 14 | \$       | C\$16 | Producción Soya    | 0,0 acre | _ | 0,0 acre | 360,0 acre |   | 0,0 acre | 360,0 acre | _ |
| 15 | \$       | D\$16 | Producción Avena   | 6,0 acre |   | 0,0 acre | 240,0 acre |   | 6,0 acre | 360,0 acre | _ |
| 16 |          |       |                    |          | - |          |            | - |          |            | - |

Ilustración 7

- **Valor**. Hace referencia a la solución óptima encontrada: 6 acres de Maíz y 6 de Avena.
- **Límite Inferior**. Es el menor valor que puede tomar la variable (suponiendo que las demás mantienen el valor óptimo encontrado), y satisfacer todas las restricciones.
- **Resultado Objetivo**. Es el valor que toma la función objetivo si la variable considerada toma el valor del límite inferior y las demás variables mantienen el valor óptimo encontrado.

En nuestro caso tendríamos los límites de cada variable serian:

#### <u>Límites de la Variable Maíz:</u>

- Valor del límite inferior de la variable Maíz: 0 acres
- Valor Óptimo de la variable Avena: 6 acres
- Función objetivo bajo estas condiciones: 40\*0+20\*6 = 120

*Límite superior*. Es el mayor valor que puede tomar la variable (suponiendo que las demás mantienen constante el valor óptimo encontrado)

<u>Resultado objetivo</u>. Es el valor que toma la función objetivo si la variable considerada toma el valor del límite superior y las demás mantienen el valor óptimo encontrado.

- Valor del límite superior de la variable Maíz: 6 acres
- Valor Óptimo de la variable Avena: 6 acres
- Función objetivo bajo estas condiciones: 40\*6+20\*6 = 360

#### Límites de la Variable Soya:

- Valor del límite inferior de la variable Soya: 0 acres
- Valor Óptimo de la variable Maíz: 6 acres
- Valor Óptimo de la variable Avena 6 acres
- Función objetivo bajo estas condiciones: 40\*6+20\*6 = 360

*Límite superior*. Es el mayor valor que puede tomar la variable (suponiendo que las demás mantienen constante el valor óptimo encontrado)

<u>Resultado objetivo</u>. Es el valor que toma la función objetivo si la variable considerada toma el valor del límite superior y las demás mantienen el valor óptimo encontrado

- Valor del límite superior de la variable Soya: 0 acres
- Valor Óptimo de la variable Soya: 6 acres
- Valor Óptimo de la variable Avena 6 acres
- Función objetivo bajo estas condiciones: 40\*6+20\*6 = 360

#### Límites de la Variable Avena

- Valor del límite inferior de la variable Avena: 0 acres
- Valor Óptimo de la variable Maíz: 6 acres
- Función objetivo bajo estas condiciones: 40\*6+20\*0 = 240

*Límite superior*. Es el mayor valor que puede tomar la variable (suponiendo que las demás mantienen constante el valor óptimo encontrado)

<u>Resultado objetivo</u>. Es el valor que toma la función objetivo si la variable considerada toma el valor del límite superior y las demás mantienen el valor óptimo encontrado.

- Valor del límite superior de la variable Avena: 6 acres
- Valor Óptimo de la variable Avena: 6 acres
- Función objetivo bajo estas condiciones: 40\*6+20\*6 = 360

#### Caso Gama Marrón SA

Extraído y adaptado de UOC <u>http://www.uoc.edu/in3/emath/docs/Analisis</u> <u>Sensibilidad.pdf</u> <u>Clasificado como tipo: Producción</u>

#### 2.2.11 Enunciado

Una compañía produce televisores, equipos Hi-Fi y altavoces utilizando una serie de componentes comunes, tal y como se indica en la tabla inferior.

|           | Com         | Jonenite | s comu | lies      |
|-----------|-------------|----------|--------|-----------|
|           | Disponib.   | TV       | Hi-Fi  | Altavoces |
| Chasis    | 450 ud      | 1 ud     | 1 ud   | 0 ud      |
| Tubos     | 250 ud      | 1 ud     | 0 ud   | 0 ud      |
| Conos     | 800 ud      | 2 ud     | 2 ud   | 1 ud      |
| Fuentes   | 450 ud      | 1 ud     | 1 ud   | 0 ud      |
| Otros     | 600 ud      | 2 ud     | 1 ud   | 1 ud      |
| Margen Co | ontribución |          |        |           |
| Neto      |             | 75 ud    | 50 ud  | 35 ud     |

#### Se pide:

Estos componentes están disponibles en cantidades limitadas, por lo que se trata de plantear el problema de maximización restringida de beneficios sabiendo que la contribución neta de los tres productos es, respectivamente, de 75  $\in$ , 50  $\in$ , y 35  $\in$ .

#### 2.2.12 Planteamiento y solución

|    | А                      | В              | С            | D            | E                | F         |
|----|------------------------|----------------|--------------|--------------|------------------|-----------|
| 16 | Enunciado              |                |              |              |                  |           |
| 17 |                        |                |              |              |                  |           |
| 18 |                        | τv             | Hi-Fi        | Altavoces    | Total            |           |
| 19 | Unidades a Producir    | 200 ud         | 200 ud       | 0 ud         | 400 ud           |           |
| 20 | Margen Unitario        | 75,0 €/ud      | 50,0 €/ud    | 35,0 €/ud    |                  |           |
| 21 | Margen Contribución    | 15.000€        | 10.000€      | 0€           | 25.000€          | Maximizar |
| 22 | Chasis                 | 200 ud         | 200 ud       | 0 ud         | 400 ud           |           |
| 23 | Tubos                  | 200 ud         | 0 ud         | 0 ud         | 200 ud           |           |
| 24 | Conos                  | 400 ud         | 400 ud       | 0 ud         | 800 ud           |           |
| 25 | Fuentes                | 200 ud         | 200 ud       | 0 ud         | 400 ud           |           |
| 26 | Otros                  | 400 ud         | 200 ud       | 0 ud         | 600 ud           |           |
| 27 |                        |                |              |              |                  |           |
| 28 | Restricciones          |                |              |              |                  |           |
| 29 | Todas las variables de | ber ser no neg | zativas      |              |                  |           |
| 30 | Limitación de disponi  | bilidad de con | nponentes    |              |                  |           |
| 31 | Limitación de disponi  | bilidad de Re  | cursos - RE  | STRICCION    | NES              | Holgura   |
| 32 | Postriosionos          | llea           | Niveles de r | estricciones | - Disponibilidad | (Slack)   |
| 33 | Restricciones          | 050            | RH           | S (Right Han | d Side)          |           |
| 34 | Chasis                 | 400 ud         | <=           | 450 ud       | E21              | 50 ud     |
| 35 | Tubos                  | 200 ud         | <=           | 250 ud       | E22              | 50 ud     |
| 36 | Conos                  | 800 ud         | <=           | 800 ud       | E23              | 0 ud      |
| 37 | Fuentes                | 400 ud         | <=           | 450 ud       | E24              | 50 ud     |
| 38 | Otros                  | 600 ud         | <=           | 600 ud       | E25              | 0 ud      |
|    |                        | *1             |              |              |                  |           |

**Ilustración 8** 

| metros de Solver              |                       |                     |   |                                                                                           |
|-------------------------------|-----------------------|---------------------|---|-------------------------------------------------------------------------------------------|
| Es <u>t</u> ablecer objetivo: | \$E\$20               |                     |   |                                                                                           |
| Para: () <u>M</u> áx.         | 🔘 Mín                 | © <u>V</u> alor de: | 0 |                                                                                           |
| Cambiando <u>l</u> as celda   | s de variables:       |                     |   |                                                                                           |
| \$B\$19:\$D\$19               |                       |                     |   |                                                                                           |
| \$B\$31:\$B\$35 <= \$C        | 0\$31:\$D\$35         |                     | ^ | <u>A</u> gregar                                                                           |
|                               |                       |                     |   | Cambiar                                                                                   |
|                               |                       |                     |   | Cambiar<br>Eliminar                                                                       |
|                               |                       |                     | ~ | Cambiar<br>Eliminar<br>Restablecer todo<br>Cargar/Guardar                                 |
| Convertir variab              | les sin restricciones | en no negativas     | ~ | <u>C</u> ambiar<br><u>E</u> liminar<br><u>R</u> establecer todo<br><u>C</u> argar/Guardar |

Ilustración 9

#### 2.2.13 Informe de Confidencialidad o Sensibilidad

Recordemos que este análisis proporciona información sobre cuán sensible es la celda objetivo a los cambios en sus restricciones. En caso de seleccionar Modelo No Lineal en las Opciones, el informe de Sensibilidad no incluye varias columnas de información.

Este informe genera dos tablas: una para las variables y la otra para las restricciones.

Una <u>nota técnica a considerar</u> es que los informes de sensibilidad no pueden trabajar con

|    | Α  | В         | С                          | Cost         | e Reducio          | lo F       |      | Rangos de l   | <br>os      |
|----|----|-----------|----------------------------|--------------|--------------------|------------|------|---------------|-------------|
| 6  | Ce | eldas de  | variables                  |              | $\langle \rangle$  |            |      | coeficientes  | s objetivos |
| 7  |    |           |                            | Final        | Reducido           | Objetivo   |      | Permisible    | Permisible  |
| 8  |    | Celda     | Nombre                     | Valor        | Coste              | Coeficient | e    | Aumentar      | Reducir     |
| 9  |    | \$B\$19   | Unidades a Producir TV     | 200          | 0                  |            | 75   | 25            | 5           |
| 10 |    | \$C\$19   | Unidades a Producir Hi-Fi  | 200          | 0                  | \          | 50   | 25            | 12,5        |
| 11 |    | \$D\$19   | Unidades a Producir Altavo | ces 0        | -2,5               |            | 35   | 2,5           | 1E+30       |
| 12 |    |           |                            |              | $\bigtriangledown$ |            |      |               |             |
| 13 | Re | estriccio | ones <u>Pr</u>             | ecios Duale: | <u>s</u>           | E          | lang | jos del Right | -Hand-Side  |
| 14 |    |           |                            | Final        | Sombra             | Restricció | n /  | Permisible    | Permisible  |
| 15 |    | Celda     | Nombre                     | Valor        | Precio             | Lado dereç | ho   | Aumentar      | Reducir     |
| 16 |    | \$B\$31   | Chasis TV                  | 400          | 0                  | 4          | 50   | 1E+30         | 50          |
| 17 |    | \$B\$32   | Tubos TV                   | 200          | 0                  | 2          | 50   | 1E+30         | 50          |
| 18 |    | \$B\$33   | Conos TV                   | 800          | 12,5               |            | 00   | 100           | 100         |
| 19 |    | \$B\$34   | Fuentes TV                 | 400          | 0                  | 4          | 50   | 1E+30         | 50          |
| 20 |    | \$B\$35   | Otros TV                   | 600          | 25                 | / 6        | 00   | 50            | 200         |

Ilustración 10

La solución óptima sería producir 200 televisores, 200 equipos Hi-Fi, y ningún altavoz.

La columna de Reducido Coste (Gradiente) nos indica que no resultará rentable producir altavoces a menos que el beneficio que éstos generen aumente en  $2,5 \in$  (llegando a  $37,5 \in$ )

Examinando los Rangos de los Coeficientes Objetivo, observamos que la solución actual no variaría si el beneficio generado por cada televisor se moviese en el rango 70-100 €, o si el generado por los equipos Hi-Fi lo hiciese en el rango 37,5-75 €, o si el de los altavoces no se incrementase en más de 2,5 €.

Los Precios Duales determinan, junto con los Rangos del Right-Hand-Side, que estaríamos dispuestos a pagar hasta  $12,5 \in$  por cada unidad adicional de conos hasta un máximo de 100 conos, y hasta  $25 \in$  por cada unidad adicional de componentes electrónicos hasta un máximo de 50 componentes.

Observar que, por el contrario, perderíamos 25 € por cada componente electrónico que "nos quitasen" de los 600 disponibles, hasta un máximo de 200 unidades (cifra a partir de la cual será necesario volver a programar)

- 1) *Celdas Variables-Celdas Cambiantes (Variables de Decisión)*. Esta sección del informe indica que actividades entraron en el plan final (solución óptima).
  - Parámetros o Coeficientes. Los parámetros son constantes usadas en el problema para determinar la función objetiva y los recursos disponibles (restricciones o RHS).
  - Valor Final o Final Valor (solución óptima). Indica la solución óptima obtenida, en nuestro ejemplo 200 TV y 200 equipos HI-FI. El Solver indica con un cero las actividades que no entran en la solución óptima, tal es el caso de la producción de altavoces
  - Coste Reducido, Gradiente Reducido o Costo de Oportunidad. Las actividades que entran en el plan óptimo tienen un costo reducido igual a cero, mientras que las que no entran tienen un costo reducido negativo.

Una manera de interpretar un Costo Reducido no nulo (zj-cj >0) es la siguiente : el Costo Reducido asociado a una variable (xj) de decisión indica en cuanto debe incrementarse el coeficiente correspondiente en la función objetivo (cj) para que el empleo de dicha variable en la solución óptima resulte rentable.

- Coeficiente Objetivo u Objetivo Coeficiente. Son los precios netos de cada actividad.
- Rangos o RHS . Son los rangos en que se pueden mover las restricciones es decir la disponibilidad de recursos. En este sentido tenemos:
  - Aumento Permisible Indica en cuanto se puede aumentar un coeficiente objetivo (precio neto) sin que cambie la solución óptima.
  - **Disminución Permisible** Indica en cuanto puede disminuir un coeficiente objetivo (precio neto) sin que cambie la solución óptima.
- Rango de Optimalidad Se forma a partir de los coeficientes objetivos y de los aumentos y disminuciones permisibles. La solución óptima de un modelo de Programación Lineal no cambia si un coeficiente objetivo de alguna variable en la función objetiva cambia dentro de cierto rango. Solo se permite el cambio de un coeficiente.

#### 2) <u>Restricciones</u>.

- Valor Final Indica la cantidad de los recursos disponibles utilizados en el proceso productivo.
- Precio Sombra (o Precios Duales). Es el cambio marginal en el valor de la función objetiva óptima que se produce si se modifica una restricción (es decir si se incremente en una unidad).

El Precio Sombra para cada una de las restricciones representa el cambio a nivel de la Función Objetivo como consecuencia de una modificación marginal (de una unidad) del Lado Derecho de las restricciones (el límite de disponibilidad del recurso). Se asume que la solución es óptima y que todos los otros parámetros del problema se mantienen constantes. Los Precios Sombra pueden ser calculados modificando el Lado Derecho de la restricción de una unidad, resolviendo el sistema y luego comparando la diferencia a nivel de la Función Objetivo.

Estos Precios Sombra permanecen constantes solamente al interior de un rango de valores, dentro del cual la restricción continúa estando activa ("binding"), al que se denomina Intervalo Permitido de Factibilidad. El Intervalo Permitido para permanecer Factible es el intervalo de valores del coeficiente bi (correspondiente a la restricción i) en el que la solución óptima permanece factible.

Estos Intervalos o Rangos pueden ser calculados a partir de la información disponible a nivel del Informe de Sensibilidad: Incremento permitido ("Allowable Increase") y Decremento permitido ("Allowable Decrease").

- Restricción Lado Derecho (Constraints). Son límites físicos, económicos, tecnológicas, o de cualquier otra índole, que se imponen a las variables de decisión: 400 unidades de chasis de tv, 200 tubos de tv, 800 conos de tv, etc.
- Aumento y Disminución Permisible Indica en cuanto se puede aumentar/disminuir el recurso disponible sin que se modifique la solución óptima
- Rango de Factibilidad Indica que el valor del precio de sombra permanecerá sin modificación alguna, siempre y cuando la restricción en cuestión permanezca dentro del llamado rango de factibilidad

|    | А  | В         | С                             | D                 | E                | F             | G               |
|----|----|-----------|-------------------------------|-------------------|------------------|---------------|-----------------|
| 14 | Ce | elda obj  | jetivo (Máx.)                 |                   | $\frown$         | _             |                 |
| 15 |    | Celda     | Nombre                        | Valor original    | Valor final      | Valor óptin   | <u>no de la</u> |
| 16 |    | \$E\$20   | Margen Contribución Total     | 0€                | 25.000€          |               | euvo            |
| 17 |    |           |                               |                   | $\smile$         |               |                 |
| 18 |    |           |                               |                   |                  | 0-1           |                 |
| 19 | Ce | eldas de  | e variables                   |                   |                  | Solucion opti | <u>ma</u>       |
| 20 |    | Celda     | Nombre                        | Valor original    | Valor final      | Entero        | _               |
| 21 |    | \$B\$19   | Unidades a Producir TV        | 0 ud              | 200 ud           | Continuar     |                 |
| 22 |    | \$C\$19   | Unidades a Producir Hi-Fi     | 0 ud              | 200 ud           | Continuar     |                 |
| 23 |    | \$D\$19   | Unidades a Producir Altavoces | 0 ud              | 0 ud             | Continuar     | _               |
| 24 |    |           |                               |                   | $\smile$         |               | _               |
| 25 |    |           |                               |                   | Caréncia o       | Excedente     | $\frown$        |
| 26 | Re | estriccio | ones                          |                   |                  |               |                 |
| 27 |    | Celda     | Nombre                        | Valor de la celda | Fórmula          | Estado        | Demora          |
| 28 |    | \$B\$31   | Chasis TV                     | 400 ud            | \$B\$31<=\$D\$31 | No vinculante | 50              |
| 29 |    | \$B\$32   | Tubos TV                      | 200 ud            | \$B\$32<=\$D\$32 | No vinculante | 50              |
| 30 |    | \$B\$33   | Conos TV                      | 800 ud            | \$B\$33<=\$D\$33 | Vinculante    | 0               |
| 31 |    | \$B\$34   | Fuentes TV                    | 400 ud            | \$B\$34<=\$D\$34 | No vinculante | 50              |
| 32 |    | \$B\$35   | Otros TV                      | 600 ud            | \$B\$35<=\$D\$35 | Vinculante    | Ø               |
|    |    |           |                               |                   |                  |               |                 |

2.2.14 Informe de Responder o Respuesta

Ilustración 11

El informe de Respuestas presenta un resumen de los resultados de la optimización organizado en tres apartados tal y como podemos ver en la Ilustración.

- 1) <u>Celda objetivo (Máx.)</u>
  - Valor Final. Valor óptimo de la función objetivo alcanzado
- 2) *Celdas Variables-Celdas Cambiantes (Variables de Decisión)*. Esta sección del informe indica que actividades entraron en el plan final (solución óptima).
  - Valor Final (solución óptima). Es el mejor valor de las celdas cambiantes, es decir cuantas toneladas se deben producir de cada tipo de pintura. El Solver indica con un cero si no se debiera producir ninguna cantidad de algún producto

El plan final establece producir a producir 200 TV y 200 cadenas HIFI a fin de obtener el máximo margen bruto.

- 3) *<u>Restricciones</u>*, Informa de la <u>s</u>ituación de cada restricción planteada
  - Valor de la celda, muestra el valor de consumo o uso del recurso para alcanzar el óptimo planteado o alcanzado en la celda objetivo.
  - Estado. Indica si un recurso se ha usado completamente (Vinculante, Obligatorio, o Limitante) o parcialmente (No Vinculante, Opcional o No limitante)
    - Vinculante, Binding, Limitante u Obligatorio. Se dice que un recurso es obligatorio (o limitante) cuando el recurso utilizado es igual al Recurso disponible.
    - No Vinculante, Not Binding No Limitante u Opcional. Cuando el recurso utilizado es menor que el recurso disponible. En este caso resulta una Divergencia o Demora (Slack)
  - Demora, Divergencia, Slack o Variables de Holgura. Cantidad de recurso que no ha sido usado o asignado en el proceso productivo, como hemos comentado en este caso resulta una *Divergencia o Demora (Slack)*

En el lenguaje del Solver se dice que un recurso es limitante (**Binding**) cuando los Recursos Utilizados son iguales a los Recursos Disponibles; de lo contrario se le denomina Recurso No Limitantes (**Not binding**) (Los recursos utilizados son menores que los recursos disponibles).

|          | A B                | С                                                         | D              | Е | F            | G                      | Н | 1              | J                      |
|----------|--------------------|-----------------------------------------------------------|----------------|---|--------------|------------------------|---|----------------|------------------------|
| 6        |                    | Objetivo                                                  |                |   |              |                        |   |                |                        |
| 7        | Celda              | Nombre                                                    | Valor          |   |              |                        |   |                |                        |
| 8        | \$E\$20            | Margen Contribución Total                                 | 25.000€        |   |              |                        |   |                |                        |
| 9        |                    |                                                           |                |   |              |                        |   |                |                        |
| 10       |                    |                                                           |                |   |              |                        |   |                |                        |
| 11       |                    | Variable                                                  |                |   | Inferior     | Objetivo               |   | Superior       | Objetivo               |
| 12       | Celda              | Nombre                                                    | Valor          |   | Límite       | Resultado              |   | Límite         | Resultado              |
| 13       | \$B\$19            | Unidades a Producir TV                                    | 200 ud         |   | 0 ud         | 10.000 ud              |   | 200 ud         | 25.000 ud              |
|          |                    |                                                           |                |   |              |                        |   | I              | or 000                 |
| 14       | \$C\$19            | Unidades a Producir Hi-Fi                                 | 200 ud         |   | 0 ud         | 15.000 ud              |   | 200 ud         | 25.000 ud              |
| 14<br>15 | \$C\$19<br>\$D\$19 | Unidades a Producir Hi-Fi<br>Unidades a Producir Altavoce | 200 ud<br>0 ud |   | 0 ud<br>0 ud | 15.000 ud<br>25.000 ud |   | 200 ud<br>0 ud | 25.000 ud<br>25.000 ud |

#### 2.2.15 Informe de Límite

El informe de Límites fue diseñado por Microsoft con el fin de suministrar un análisis diferente de sensibilidad. El informe de límites muestra el rango de los valores que pueden asumir las celdas cambiantes (variables de decisión), basados en los restricciones que se hayan definido.

Como podemos observar en la ilustración disponemos de una lista con la celda objetivo y las celdas ajustables con sus valores correspondientes, los límites inferior y superior, así como los valores del objetivo. N<u>o se genera este informe para los modelos que tengan restricciones entera</u>s. El límite inferior es el valor mínimo que puede tomar la celda ajustable mientras se mantienen todas las demás celdas ajustables fijas y se continúa satisfaciendo las restricciones. El límite superior es el valor máximo

- Valor. Hace referencia a la solución óptima encontrada: 200 TV y 200 HI-FI.
- **Límite Inferior**. Es el menor valor que puede tomar la variable (suponiendo que las demás mantienen el valor óptimo encontrado), y satisfacer todas las restricciones.

• **Resultado Objetivo**. Es el valor que toma la función objetivo si la variable considerada toma el valor del límite inferior y las demás variables mantienen el valor óptimo encontrado.

En nuestro caso tendríamos los límites de cada variable serian:

#### Límites de la Variable Producir TV:

- Valor del límite inferior de la variable TV: 0 unidades
- Valor Óptimo de la variable Producir HI-FI: 200 Unidades
- Función objetivo bajo estas condiciones: 75\*0+50\*200 =10.000 (

*Límite superior*. Es el mayor valor que puede tomar la variable (suponiendo que las demás mantienen constante el valor óptimo encontrado)

<u>Resultado objetivo</u>. Es el valor que toma la función objetivo si la variable considerada toma el valor del límite superior y las demás mantienen el valor óptimo encontrado.

- Valor del límite superior de la variable TV: 200 unidades
- Valor Óptimo de la variable HI-FI: 200 unidades
- Función objetivo bajo estas condiciones: 75\*200+50\*200 = 25.000

#### Límites de la Variable Producir HI-FI:

- Valor del límite inferior de la variable HI-FI: 0 uds
- Valor Óptimo de la variable TV: 200 uds
- Valor Óptimo de la variable Altavoces : 0 uds
- Función objetivo bajo estas condiciones: 200\*75+0\*35 = **15.000**)

*Límite superior*. Es el mayor valor que puede tomar la variable (suponiendo que las demás mantienen constante el valor óptimo encontrado)

<u>Resultado objetivo</u>. Es el valor que toma la función objetivo si la variable considerada toma el valor del límite superior y las demás mantienen el valor óptimo encontrado

- Valor del límite superior de la variable HI-FI: 0 uds
- Valor Óptimo de la variable TV: 200 uds
- Valor Óptimo de la variable Altavoces: 0 uds
- Función objetivo bajo estas condiciones: 200\*75+200\*50 = **25.000**

#### Límites de la Variable Producir Altavoces

- Valor del límite inferior de la variable Altavoces: 0 uds
- Valor Óptimo de la variable TV: 200 uds
- Valor Óptimo de la variable HI-FI: 200 uds
- Función objetivo bajo estas condiciones: 200\*75+20\*50= 25.000

*Límite superior*. Es el mayor valor que puede tomar la variable (suponiendo que las demás mantienen constante el valor óptimo encontrado)

<u>Resultado objetivo</u>. Es el valor que toma la función objetivo si la variable considerada toma el valor del límite superior y las demás mantienen el valor óptimo encontrado.